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Acoustic wave propagation in structurally helical media
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A theoretical analysis is given of the acoustic wave propagation in periodically nonhomogeneous media
made of a solid material whose stiffness tensor is uniformly rotating along a given axis. In the last years, such
media have been studied theoretically as well as experimentally, in particular for what concerns sample
preparation and possible applications. A detailed analysis of their acoustical properties is given here, based on
fully analytic and simple propagation equations. For axial propagatiorthe dispersion curves of media
where the transversal field components and the longitudinal ones are not coupled show only one forbidden
band, that gives selective Bragg diffraction; in the opposite case they show at least a second forbidden band,
that involves the quasilongitudinal and one of the quasitransversal eigenniiodiesthe first caséabsence of
coupling, the medium gives pure acoustical rotation je£ X, wherep is the helical pitch and the acoustical
wavelength, a nonperfectly uniform but very large rotatory powepfof the order of, and a guided rotation
for p>\; (iii ) in the presence of the coupling, regions of mode exchange between the longitudinal component
and a transversal one are generally present. The cases of lossy media and of quasiaxial propagation are also
considered, and the analogies between optical and acoustical properties discussed.
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[. INTRODUCTION principle, to obtain suitable samples by freezing an high tem-
perature liquid crystal, to obtain a metastable phase able to
Very few periodic media have attracted as much interessupport elastic shear waves. In the following, we will make
in optics as cholesteric liquid crystals, where the optic axis ofeference toN*-like and C*-like structures, which behave
an uniaxial material is uniformly rotating in space along aacoustically as frozen cholesterigsr chiral nematicsN*)
given direction, sayg, being everywhere orthogonal 1q. and chiralC-smectics C*), and have very different acous-
There are many good reasons for such interest: these struiécal properties.
turally helical media are very simple and at the same time The aim of the paper is the theoretical analysis of the
important, because frequently found in nature, easily obeigenmodes for the acoustic wave propagation in a continu-
tained artificially and of great interest for their properties.ously twisted solid medium, in the absence of piezoelectric-
We recall in particular the following facts. For light propa- ity. For axial propagation, it is convenient to separately con-
gating along the axixs (axial propagationthe Maxwell — sider the cases without and with coupling between the
equations admit fully analytic and very simple solutions. In alongitudinal and transversal components of the displacement
coordinate system whose axgs and x, rotate in space, Vector, which correspond respectively, N - and C*-like
rigidly following the rotation of the optic axis, such solutions structures. The first case has already been considered in Refs.
assume the simple form of plane waves. In this sense and I4,3,7,8. Some not yet fully explored properties of the
this geometry the inhomogeneous medium behaves therefofégenmodes are discussed in Sec. lll, that can therefore be
as homogeneous, with unusual and interesting optical prog-onsidered as a continuation of the cited papers. The other
erties that can be drastically changed by changing the heli%ase has received less attention up as yet, and constitutes the
pitch and the optical anisotropy. most original part of the paper. The case of oblique propa-
Even more interesting properties are expected for th@ation has been treated in Reffs,6], so that only the simple
propagation of acoustic waves in solid helical media. In thecase of quasiaxial propagation is considered.
last decade such waves have been the object of intense re-
search, in particular by Lakhtakia and co-workers, in the fol- Il. BASIC DEFINITIONS AND PROPAGATION
lowing directions. EQUATIONS
(i) Theoretical analysis of acoustic wave propagation in
solid helical media withoufl—-3] and with[4—6] piezoelec-
tric coupling between the acoustic and the electromagnetic Before the discovery of cholesteric liquid crystals, Reusch
fields. [15] prepared and studied the first artificial helical object, by
(i) Study of possible applicatiofv—10). superposing layers of mica and progressively changing their
(i) Improvements of the already known techniques fororientation along the staqiReusch pile& We consider a Re-
the preparation of helical samples, and developments of newsch pile made of identical anisotropic thin sheets of thick-
techniqueg11-14. nessd, each one rotated of an anglep with respect to the
Helical liquid crystals are of little usefulness for acousti- preceding one, and define in any sheet a local Cartesian
cal applications, because they behave as inhomogeneous litjame whose axix; is orthogonal to the sheets, and whose
uids with high viscosity. It is however possible, at least inaxesx, andx, are such that the elastic tensor components

A. Definition of the system

1063-651X/2000/6@)/01170310)/$15.00 63011703-1 ©2000 The American Physical Society



C. OLDANO AND S. PONTI

)\,,Jm of the stiffness tensax have the same values in all the
sheets. In the limit where boithand A ¢ go to zero with a
fixed value of the ratigq= A ¢/d, the axex; andx, rotate in
space describing helices with a pitch

p=2mwl/q. (1)
The helices are right-handed fa>0, left-handed forq
<0. We define then a laboratorynonrotating frame
X1,X5,X5, With x3=Xx3, and a rotation matriR such that

=Rix;, i,j= 2

X 1,2,3.

An external monocromatic plane wave with wave vedtor
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0O -1 0
0O 0 O
and
P=0X3+ ¢g. 9

Only three components of the stress tensoappear in the
propagation equation, and thex® kernel matrixB depends
on Xz only through the azimuthal anglé that defines the
rotation of the local axes;, X, with respect tox;, Xj.
Since the anglep only appears in the terms depending on

lying in the planex;, x; generates internal waves whose k; , the kernel matri»8 is independent of xfor k;=0, i.e.,

wave vectors have tangential componelcﬁt x1 (phase

matching condition The displacement vecton and the
stress tensoo in the rotating frame can be written as

u=u(xz)exdi(kix;— ot)],

)

Oim= O m(X3z)exd i (kiXi— ot)].

for axial propagation This is the main advantage of the
rotating frame with respect to the laboratory one. Further, for
small k; values, i.e., at quasiaxial propagation, the
Xz-dependent terms can be treated perturbatively.

In Refs.[5,6] the 6X 6 stiffness matrixC instead of the
fourth rank tensoi is considered. An alternative derivation
of the propagation equations, that avoids the use of the ma-
trix C, is given in the Appendix.

The propagation equations for the displacement vector and It is important to observe that the axes; (X,,X3), used
for the stress tensor in both the laboratory and the rotatingpere to express the components of the stiffness tensors in any

frame are given in Ref44,6] for the more general case of

piezoelectric crystals in a very compact but implicit form.
Rather long but simple calculations give the following ex-

plicit propagation equation in the rotating frame:

dg B,

d_x3_|— (4)
R G §uu EUO’
B=l - BB By

where o;= 03, and the kernel matriB is defined by the
following set of equations:

iBu,=ar —ik;n(\®cos¢p—X*?sin¢), (5)
iBus=1,
iByu=—pw’l—ikj[a;; cos¢—aysing],
iBsr=—qr —ikj[a;5cos¢—azsing],

a1 =ikl (N =RA37A% cosgp— (M2 =3 7A ) sin¢],

(6)
a;,=X%7,
wherej=1,2; X! and 7 are 3x3 matrices defined as
Nh=Nijm,  2=(%~% (7)

1 is the 3xX 3 identity matrix;

sheet, are different from the crystallographic ax&gy(z)
generally used in the theory of elastic{ty6]. A further ro-
tation matrix is therefore required to relate the components

Xij,d and\;jy of the stiffness tensax in the rotating and in

the crystallographic frames. In the following, we use the

symbolsh i (X3), Xim , and\;;,, for the components of the
tensor A in the laboratory, rotating and crystallographic
frames, respectivelysimilarly for the components dt).

The medium will be assumed as lossless and achiral, and
therefore defined by a real symmetric matixexcept in the
Sec. Il C, where a brief discussion of the possible effects of
losses is given.

B. Axial propagation: Cholestericlike and smecticlike
structures

For axial propagation, the>83 submatrices oB write

Buw=Bso=—10r, By,=—in, Bou=ip(o21. (10

The matrixr appearing irB,, andB,,, couples the transver-

sal componenta;, U,, o;, o, of the state vectors,
whereas the coupling between these components and the lon-
gitudinal ones depends on the structure of the maiyix

=(1\%) 1. As already stated in the introduction, it is conve-
nient to separately treat the cases with and without coupling
between transversdll) and longitudinal(L) components.
The decoupling between tiieandL components of the state
vector only occurs in solid media having a structure similar
to the one of cholestericN*) liquid crystals, namely in
helical structures that locally have a symmetry axis orthogo-
nal to the helix axisxs. In all the other helical structures,
including smecticC* liquid crystals, the six components are
coupled. As already stated in the introduction, these two
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types of structures are referred hereNdslike and C* -like, spectively ¢o/m and 2m in international notations With

for brevity, but our analysis covers any solid helical struc-such crystals, we obtain ld* -like structure if the crystallo-

ture. graphic axisz is everywhere orthogonal to the helix axig
The coupling betweei andL components is given by the (i.e., if #=90° and aC*-like structure if it is obliquely

elements of the symmetric matrices and A3% having oriented. For the sake of definiteness, we will consider in the

pedices 13 and 23. The conditions to obthil-like struc- ~ Next sectionN* -like structures wher@=90°, z=x,, andy

tures are therefore =Xy. In this case

A3=N1s3= Csa=0, N33=R23e=Cas=0. (1D m=1UCss,  m2=Cos,  75=1/Ca1. 4

As stated in the introduction, the axial propagation in
N*-like structures has been already treated in several papers,
so that we only discuss some properties that have not yet
been fully explored. Analogies and differences between
and 7. In the N*-like structures we can therefore set  acoustical and optical waves are evidenced by comparing the
acoustical properties of solid helical media with the well-
m 0 0 known optical properties of the helical liquid crystal media.
0 7 O To this purpose, we observe that the difference between lig-

For axial propagation, any plane containirg can be con-
sidered as the incidence plang (x3). If the conditions(11)

are satisfied, a suitable choicexgfdiagonalizes the matrices
'X33

2= 0 0 (12 uid and solid structures is not very important for the electro-
73 magnetic waves, at least in the framework of linear optics,
whereas it becomes essential for the acoustic waves.
without loss of generality.
To better understand the meaning of Efjl) for struc- IIl. AXIAL PROPAGATION IN CHOLESTERICLIKE
tures whose layers are perfect crystals, we must consider the STRUCTURES

reference framex,y,z). If it is coincident with the rotating . o )
frame (x;,X»,X3), Eq.(11) is satisfied by crystals of all crys- ~ 1he propagation matri, given by Eq(10), is a constant
tallographic systems, except the triclinic one, which gives inmatrlx.and admits solutions having the simple form of plane
any caseC* -like structures. It is however to be observed thatWaves:
only the monoclinic and orthorombic systems are of interest. I . - o i
In fact the other, more symmetric, systems give a structure u=upexplikxz), o=o0oexpikxs). (19
that behaves no more as helicoidal: the three componen
Uq,Us,Us Of U become uncoupled, and the solutions of the
propagation equations are trivial. Such systemsept the
cubic one give interesting structures if the crystallographic
axis z makes an angl@ (tilt angle) with the helical axisxs. 0 73\ [ Us Us

i =k o3l (16

I‘—Sor N*-like structures the longitudinalL) and transversal

(T) components of the vectorsand o are not coupled. The
longitudinal components satisfy the equation

In the following sections we consider media whose mafrix
in the crystallographic framex(y,z) has the simple struc-
ture:

—pw? 0 o3

which gives
Cll C12 C13 0

C12 C22 C23 0
C13 C23 C33 0

k?=pn3w’=pw’/Cyy. 17

o O O

[As already stated, we consider in this section structures for
C=| o 0 0 Cu O (13)  which 7; are related toC;; by Eq. (14), for the sake of
definiteness: for the oth&* -like structures, we must simply

0 0 0 0 Cs O substitute C4;,Css,Cqg With other elastic constanisThe
0 0 0 0 0 Cg two solutions correspond to eigenmodes propagating in op-
posite directionsl{-modes. These modes have been exhaus-
tively treated in Ref[3], so that no further analysis is re-
quired.

The two transversal components are coupled and satisfy
the equation

0
0
0
0

We recall that in Eq(13) the indexes have the following
meaning:

lexx, 2<yy, 32z 4eyz, 5eXz, 64Xy,

and that the stiffness matrix has the structure of Equation 0 d 7o 0\ [t U1

(13) for crystals of the cubic, hexagonal, and orthorhombic —-q 0 0 = Uz Uz
systems and of the classes#h, 422, £m, 4/mm of the I —pw? 0 q o1 =k oy |
tetragonal system. Equati@h3) is also valid for frozen cho- 0 —pw? —q 0 o o
lesteric and chiral smectic liquid crystals, which can be con- P 2 2
sidered made of layers having symmeby,, andC,,,, re- (18
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FIG. 1. Dispersion curves in the rotating frame for a cholester-

iclike structure made of tellurium dioxidéclass 422 Cgs=2.65
(10%° N/m?) and Cgs=6.59 (13° N/m?). The normalization fre-

quency isqy(Css+ Cgg)/p.
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FIG. 2. Axes ratio versus normalized frequency. Within the fre-
quency gap the eigenmode 1is linearly polarized. The material
parameters are the same as in Fig. 1.

that summarizes the properties of the four transversal eigen- Here and in Fig. 3 we assume elastic constants

modesT; , T, , Ty , andT, . After elimination of the com-
ponentso; ando,, we obtain the equation system

Cssk®+Cesd”  iK(Csst Cep) | [ Uy , Uup
—iqk(CsstCgg)  Cok®+Css0” | | Up | P97\ Uy |-
(19
which straightforwardly gives
k2= 02+ ki, = V402K + ki, (20)
U,  —igk(CsstCgg)  Cssd’+Cok’—pw?
Uy C55k2+066q2—pw2_ igk(Csst+Cgg)
(21)
where
Csst Ces Cs5—Ces
K=po?oo—, = (22)
2C5:Ce6 Csst Ces

The parametek;,; has the meaning of an averaged wave

vector. Equatior(20) admits in general four solutions ky ,

+Kk,. The dispersion curves are shown in Fig. 1, the ratio of
the ellipse’s axes in Fig. 2, where the sign of the axes ratio
defines the handedness of the elliptic polarization. To this

purpose, we notice that the eigenmodgs and T, have
everywhere opposite signs, whereas similar plots in R@f.

show an interval where they have the same sign. This appar
ent discrepancy is simply due to a different labeling of the
eigenmodes. Our labels and — define the sign of the
group velocitydw/dk (that gives the direction of the energy
flux), whereas in Ref.7] the modes are labeled according to

corresponding to the tetragonal crystal tellurium
dioxide (class 422 where C;5:C13:C11:C33:C55:Cqg
=5.12:2.18:5.5:10.587:2.65:6.926]. All the curves have
the same shape as the curves obtained for the electromag-
netic waves. In particular, the curvds’ and T; clearly
show the well-known frequency gap, whekeis purely
imaginary and the periodic structure gives a Bragg diffrac-
tion band The presence of a forbidden band has already
been evidenced in Refg3] and[7]. Real and purely imagi-
nary k values correspond to propagating waysi®ble solu-
tions) and to standing evanescent wavesstable solutions
respectively. For what concerns the polarization of the eigen-
modes, the most important property has already been evi-

25 T T T T T T T

151 Red))

o
=
-

Re(k,)

Im(K )

0 0.2 0.4 06 0.8 1 1.2 14 1.6 18 2
normalized frequency

FIG. 3. Dispersion curves in the laboratory frame. The curves

the sign ofk. The apparent discrepancy occurs in the intervaljive the wave vectors of the dominant Fourier component of the
of the dispersion curves whekeand dw/dk have opposite Bloch wavesT; and T, . The material parameters are the same as

signs.

in Fig. 1.
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denced in Ref[3] and can be stated as follows. The eigen-axes, because in these directions the eigenmodes are circu-

modes are in general elliptically polarized; in the rotatinglarly polarized in opposite senses and have different wave

frame, the shape of the ellipse is independenkpfin the  vectorsky, k,.

laboratory frame it rotates alongg, rigidly following the (i) The rotatory power, i.e., the rotatiop/d per unit

rotation of the structure. A plot versus of the field com-  length, is equal toK,—k;)/2 and scales aa/\?, wherea is

ponentsu; or oi’j in the laboratory frame, at a fixed instant an average length of the lattice cell. Significant deviations

gives beatinglike curves. This fact is obviously related to thefrom the\ 2 law are only found foi of the order ofa[17],

presence of the two characteristic periods: the wavelengthe., in a frequency range where the medium is strongly dis-

A= 2x/k and the periogh= 7/q of the structure. Such prop- persive.

erties are also displayed by the optical waves in cholesterics, To discuss the rotatory power of *Nlike systems, we

but the acoustical waves give rise to a more rich variety ofmust find outk{ (i=1,2) and the corresponding wave vec-

behaviors. In particular, a beating structure appears even igyrsy/ =RU in the laboratory framdor the modes; , T .

the L-modes if we consider the componert$;, 02, and  To this purpose, it is convenient to consider any eigenwave

o1, of the stress tensg8]. as a superposition of circularly polarized waves, because the
We add here the following interesting properties, valid fortransformationR leaves unchanged the polarization state of

real values of the constan@ss andCgg (the case of complex these waves and simply shifts their wave vectors filoto

elastic constant is discussed in Sec. NI C k’=k=q, where the sign depends on the handedness of the
(i) At the boundaries of the Bragg band, the eigenv&lue circular polarization. Any polarization state can be written as
of the modeT; is equal to zero, and EG19) gives a superposition of left and right circularly polarized states by

means of the Jones formalism:

2
o] Cep

B iniont (23 a1\ ata,[t) a-a,f ! 1 1
Wy 55 ia2 = > | + > _i :al | +ar _i ,

The band width only depends on the anisotropy ratio (24)
Ces/Css and could be very large.

(i) If the solution is stable, one of the two ellipse’s axes iswherea, and a, are, respectively, the amplitude of the left
everywhere along the symmetry axis of the structure. If it isand of the right circular components. The difficulty to study
unstable, the ellipse collapses into a straight line. The polarthe acoustical activity iflN*-like systems is related to the
ization is linear, with the vectot everywhere parallel to fact that in the laboratory frame the eigenmodgsand T,
X1=z at one of the two boundaries of the forbidden band,are no more plane waves, but Bloch waves with two plane
obliquely oriented with respect t®, within the band, and wave components having wave vectds=k;*q, i=1,2.
parallel tox, at the other boundary: it therefore rotates of Strictly speaking, such modes cannot give acoustical activity.
90° for w going fromw; t0 w,. However, a largep/\ range exists, where one of the two

Such properties are immediately found by considering Eqcircular components is very small with respect to the other
(21). The ratiou,/u; is purely imaginary(a fact that obvi- one and, as a first approximation, it can be neglected: the

ously means elliptic polarization, with the ellipse’s axesegl|lipse described by the vectoft) at any given point is very
alongx; andx,) if kis real; it is real(and the polarization is  close to a circle. This actually occurs in the low frequency
|inear) if kis pUrely imaginary; it is equal to zero or to range, and more precise|y f(p]'/)\’ going from zero up to
infinite if k=0. ~0.5, wherex’ is the wavelength in the laboratory frame. In
For complex values of the constan®ss and Ceg, the  this range, the medium behaves in fact as homogeneous, at
wave vectork is in general complex: the simplicity of the |east for its acoustical and optical propertjd8—20, since

properties discussed here is therefore lost. the period of the structure is small with respect to the wave-
length. However, even in this range a great difference exists
A. Acoustical rotation between chiral crystals and ti -like structure considered

The most important optical and acoustical properties op ere, where the rotatory powe#d is given by
N*-like systems for axial propagation are related to their
. 4 2
rotatory power and to the presence of a single and very large 8 Kint'
forbidden band. In this section we consider the acoustical d- 8q(k2,—q?) +
rotation. Since it has already been considered in Bdfwe int

only discuss its dependence on the rdtiq=p/\, wherep . . ) ) .
This equation is the acoustical equivalent of the de Vries

is the pitch of the helical structure andthe average wave- X L . > .
length of the eigenmodeE,, T,. This dependence appears f—:'quatlon[21]; it is easily derived from Eq(20) by consider-

in fact as quite complicated and very unusual, if compared™d the domina}nt circular component of the eigenmaobgs
with the one displayed by the homogeneous chiral crystalslz - For p<\’, Eq. (25 gives a scaling low of the type
We recall the following. kf:n/qs. The rotatory power scales as 4, not ask ~2. In fact

(i) Homogeneous crystals rotate the polarization plane ol(i‘:1t is proportional tow* [see Eq.(22)], to k'# (see Fig. 3,
linearly polarized waves propagating along their acoustiand therefore to.’ ~4.

0(5%). (25)
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At higher frequencies, the smaller components of thehe same amplitude and opposite senses of rotation, and give
Bloch waves gradually increase, and give new and undesirettherefore rise to a linearly polarized standing wave. For small
effects, at least for the acoustical rotation: we hayseudo  enoughd values, the amplitude of the reflected wave is very
rotatory power, where the rotation is no more uniform and asmall, and the wave generated by the source reaches the
linearly polarized wave becomes slightly elliptical, with an termination sheet practically unchanged, i.e., circularly po-
oscillatory behavior of the smaller ellipse’s axis. The averagqarized. In this condition, the wave generated by the source is
rotatory power is still given byk; —k;)/2, wherek; andk;  no more a standing wave but a circularly polarized propagat-
refer to the dominant Fourier components of the Bloching wave, that can be considered as a superposition of the

waves. As shown in Fig. 3, this quantity has maxima at the;jgenmoder; andT; (the presence of this last eigenmode
edges of the forbidden band, where the approximated for

) . . ; - lis required by the boundary conditions at the termination
mula (25) fails. Interestingly, the medium can give optical d y y

. . . . ) heel. It is now easily understood that within the forbidden
rotat.lon even in the forb|d,den band: as e_xpla!ned in the ne>(Eand the sample gives selective attenuation or pseudo rota-
section. At a given valug;,~p of A\’ within this band, the

v ) . tory power, depending on its thickness.

rptatory power chgnges its sign. Fof> A, , the polariza- . The optical equivalent of the acoustical rotation within the
tion plane rotates in the same sense as the symmetry axis Qfiiqden band is well known: measurements of the optical
the helical structure, fokh’' <\, it rotates in the opposite rotatory power of cholesteric liquid crystal samples] and
sense. , , _ _ of chiral sculptured thin filmg24] in the forbidden band

The undesired effects increase by increagm@nd for  have peen done. We presume that the effect discussed here
p>\'/6 we are outside the pseudo rotatory power regimecqyid also be of interest for acoustical applications, since in
for eac*h one of the eigenmodes, the ellipse described by the imited frequency range the rotatory power goes continu-
vectoru is strongly elongated, and a superposition of the twoously from positive to negative values, and can give an
eigenmodes gives rise to a complicated space dependencegdoustical rotation of 90° along a path of few pitches.
the vectoru. At higherp values, i.e., fops>\'/$, the ellipse Obviously the interest of the unstable solutions is not re-
practically collapses into a straight line: the polarization ofstricted to the acoustical rotation. A further reason of interest
the T eigenmodes is nearly linear, Wifhparallel or orthogo- 1S ew_den_ced in the next section. V_\/e conclude thls section by
nal to the symmetry axis of the structure. The eigenmode§°ns'de””9 the reflectlgn properties of the helical structure
are guided by the structure, in the sense that their polarizd©r waves that only excite the eigenmo@¢ . The polariza-
tion plane simply rotates, adiabatically following the rotationtion state of the external plane wave must be suitably se-
of the elastic tensofadiabatic limit or waveguide regime lected; it is nearly circular if the impedance mismatch of the
[22]). This rotation must not be confused with the rotatorytwo media is very small. For such wave, a thick sample
power, because it only occurs for two well defined and muehaves as a perfect mirror, because it gives total reflection.
tually orthogonal input polarizations: all the other linearly However, the mirror and the helical medium give reflected
polarized waves excite both eigenmodes, which travel at difvaves with opposite handedness. This unusual reflection

ferent phase velocitiesOgs/p) 2 and (Css/p)¥2 giving in ~ Property of hglical media_ is a consequence of the very par-
general elliptic output polarization. ticular reflection mechanism described above. In the mirror

reflection the incident and the reflected waves have the same

angular momentum. In the helical medium the angular mo-

menta are opposite: if the first medium is a viscous aniso-
B. Unstable solutions tropic liquid (that supports viscous shear waNescircularly

The presence of a frequency band wherekalue for a polarized wave can rotate the reflecting helical structure.
T-mode becomes purely positive imaginary, giving selective
attenuation, has already been evidenced in R@f.We dis-
cuss here the possibility to obtain pseudo rotatory power C. Lossy media
even with_in t.he forbidden_ band, despite the fact that herg the The very simple polarization properties of the eigenmodes
mode T, is linearly polarized. To this purpose, let us first j, |gssless media have been derived by considering that all
describe the mechanism that gives rise to an unstable solyse quantities appearing in E€1) are purely real or purely
tion. Consider a lossless helical medium and an ideal Setuﬁ’naginary. In lossy media the elastic consta@ts and Cgg
made of a source sheet at the plage-0, and of a perfect hecome complex and the simplicity of the solutions is lost.
termination sheet az=d, where the wave is totally ab- A the eigenmodes show dissipative attenuation, that in the
sorbed. If the polarization state of the wave generated by thg,higden band adds to the reactive attenuation already dis-
source is orthogonal to the polarization state of the mBfle  cyssed for lossless media. For perfect crystals the dissipative
(and therefore nearly circuleonly the modeT; is excited.  attenuation is very small, but in artificial structures a second
In the limit d—o, the wave does not reach the terminationand more efficient source of attenuation could be present,
sheet, because it is attenuated: this means thagiadually  due to the defects that act as diffusing centers.
but totally reflected by the successive layers of the medium. The attenuation due to absorption or diffusi@xtinction
The linear polarization of the eigenmodg comes from the is generally considered as a parasitic effect, to be avoided at
superposition of the forwardly and backwardly propagatingleast for what concerns the working of instruments. How-
plane waves, that at any point are circularly polarized withever, it could give rise to a conceptually interesting new
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1 T T T T 771 O 77/

09 - ”
B,=—in=—i| 0 72 7|, (26)

08 - - 77/ 77/! 73

o
2
T
1

and for lossless media it is real. The off-diagonal matrix
elementsy’ and 7" act as coupling terms between the lon-

gitudinal and transversal components of the vectofhis
gives new effects, without an optical equivalent: hence the
great interest of this case. In general, all the eigenwaves are
now elliptically polarized. The ellipse described by the vec-

tor u at any given point rotates solidary with the symmetry

axis without changing its shape, but it is contained in a plane

obliquely oriented with respect to;. One of the main axes

9 ; . . of the ellipse is along, if ' =0, alongx, if »"=0. If both

13 1.32 134 1.36 1.38 14 142 . . .
normalized frequency n' and %" are different from zero, the ellipse’s axes can in

principle have any direction.

FIG. 4. Attenuation of the eigenmodE] over a distanced From Egs.(4), (10), and(26), the following bicubic dis-
=10\, for a hypothetical medium with parameters vali@g persion relation is easily found:
=2.65x 10" and Cge=(6.59+ 0.1 i w)10' in SI units. The wave
is strongly attenuated except in a very thin interval o w ké—k*a+k?b+c=0, (27)
~0.01), close to one of the boundaries of the forbidden band, that
is at the left-hand side of the transmittance peak. The curve eviwhere
dences an unusual and interesting property of the eigenwaves in ) )
proximity of the forbidden band. a= (1t 72+ n3)pw+ 297,

intensity
o o o o
w L o [}
T T T
L .

o
[N}
T
'

01 . b

o . b=(n17m2+ mma+ mam3—n' %= 7"?) p?w*
Effect, ConSIStIng in an anomalous transmission peak at one

of the boundaries of the forbidden bat@orrmann effect +(273— m— ) PPpw’+q?, (28)
This fact is a consequence of the extinction anisotropy, and

of the fact that at the two boundaries the polarization is  €=(— 717273+ 727" 2+ 717"?) p°w®

nearly linear, with the polarization plane parallel or orthogo- 12 w2\ 2 42 244

nal tglthe symmetry azis of the stfucturep, where the ext?nc- T lmnst mams= 7 )TN mepld

tion is minimum or maximum. Obviously, the transmission New forbidden bands, wherie has an imaginary part, are
peak corresponds to the case of minimum extinction. It couldxpected. Since the rootsk,, *+k,,*+ ks of Eq. (27) satisfy
be very enhanced for strongly anisotropic attenuation, ashe relation

shown by Fig. 4, where the ideal case of exactly zero attenu-

ation foru parallel to the symmetry axis is considered. The
Borrmann effect has been first found for x rays in 1924],

observed in cholesteric liquid crystals samples for light
waves|26] and discussed in thin films helicoidal bianisotro-

plcvvmee:‘jilr?arlmc?tlgztrr\?emtig?esttlncmvt\a/&vi?ﬂs.imilar to the reactive (2) only one of thEK‘Z values is real, the other two are
y 9 complex conjugated.

attenuation and to the Bragg reflection could also be present As evident. real positive? values correspond to stable
in the liquid phase of cholesterics, where the elastic stress ™ ! P > P
tensora’ is zero but the medium can support strongly at-Solutions, real negativie” values correspond to unstable so-

tenuated shear waves, owing to the presence of a viscolidions with purely imaginary wave vectors. The possible
stress tensor. A description of the viscous shear waves iROUPle of complex con_Jugatquz values gives four strictly
anisotropic liquids is given in Ref22]. related eigenmodes, with wave vectar&’ =ik"”. Many dif-

ferent types of dispersion curves can appear, depending on
the actual values of the elastic constants and of the helix
IV. AXIAL PROPAGATION IN SMECTICLIKE pitch: the universal and simple behavior of the dispersion
STRUCTURES curves ofN*-like structures is lost. It is however to be ob-
served that for small values of the coupling parametgrs
We consider here the helical structures where the transand 7" the properties of the eigenmodes are in general not
versal and longitudinal components of the acoustic wave areery far from the ones discussed in Sec. Ill. In this case, it is
coupled. By suitably choosing the direction of the axgs  convenient to first find out the properties of the unperturbed
Xp, the submatrixB,,, of the propagation matri8 can be eigenmodes, obtained by setting =7"=0. Only around
written as the degeneration points the properties of the perturbed and

k?+k3+ki=a>0, (29

the following cases can in principle appear, for real elastic
constants:
(1) the threek? are real, and at least one is positive;
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FIG. 5. Dispersion curves in the rotating frame for a smecticlike  FIG. 6. Dispersion curves and modes ratio in the rotating frame

structure, made of tellurium dioxide, with=45°. for a smecticlike structure WwithCy;:Cas3:C13:Cya:Css:Cos
=6:10:1:4:5:2 and)=45°; the modes ratio is defined a§/[u3

unperturbed eigenmodes are very different. The typical be+u3]. It is equal to 0 and toe for purely transversal and purely
havior of the perturbed dispersion curves is plotted in Fig. 5longitudinal modes, respectively.
Such behavior, and the properties of the corresponding
eigenmodes, can be understood on the basis of the followingorresponding to the first intersection poinkatk,, and the
arguments. The unperturbed dispersion curves for the tranfgngitudinal to transversahode exchangat k=k,, where
versal modes are similar to the ones discussed in Sec. Il anﬂe LandT Components are near|y equa| for each one of the
plotted in Fig. 1. In general, these curves are intersected byigenmoded; andT; . The parameter values are such that
the dis_persion curve of the longitudinal mode_in two differ- 1o unperturbed.-curve intersects the unperturb@g and
ent pointsk= k1_<q andk=k,>k;. At these_pomts the un- T, , but not the curvel,. This last transversal eigenmode
perturbed. solutions are degenergted, put in the presence Pélmains therefore everywhere essentially transversal.
mixing ocours. 1 5 now easlly understood on the basis of FOr Cia intermediate betweett,, and Cs the second

. " ; ’ intersection point can be absent. In this case, the longitudinal
simple topological and physical arguments, that the mod o transversal mode exchange never occurs, as shown in Fig
mixing gives anew forbidden bandt the first one of the two ' '
intersection points, and a longitudinal to transversal mode "
exchange at the other one, without a further forbidden bandStr
In fact:

(i) the unperturbed. " -curve crosses the horizontal axis

of Fig. 1 atk/q=0: it therefore first intersects the modig .
A mode mixing between two waves traveling in opposite
direction gives rise to standing waves, and the degeneratiol
point can be avoided only if a new forbidden band appears,
for topological reasons;

(i) the same. " -curve can intersect again the cufg or 2p
the curveT, , depending on the parameter values. In any
case, the two intersecting curves correspond to waves propeg
gating in the same direction. Their mixing gives rise to newg
progressive waves, as evident, with a longitudinal to trans-2
versal mode exchange, and vice versa. The two positive ung
perturbedki2 values are only slightly changed by the pertur-
bation, and are still positive.

The perturbed dispersion curves corresponding to the cas
of unperturbed curves with degeneration pointkat0.4q
andk,~1.5q are plotted in Fig. 6, together with a quantity / ) :
related to the ratio between the longitudinal and transversa ** o1 oz 04 0s 01 02 04 08 2 4810

: - . K ki
components of the displacement veatoiThe perturbed dis- a d
persion curves never give a degeneration point because they FIG. 7. The same as in Fig. 6 with
never intersect. They clearly show the n&wbidden bangd  C;;:C33:C13:Cys:Cs5:Cee=4.5:5.61:6:4:10 andd=45°.

A suitable choice of the parameters allows to obtain a
ong mixing between any couple of components of the vec-

tor U, a fact that could be of interest for applicatioisngi-

5

uency

modes ratio

05F
oo 1+
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tudinal to transversal mode-exchange and acoustical rota&ix independent solutions of the propagation equation are
tion). Bloch waves with an infinite number of Fourier components,
and a numerical analysis is in general required.

V. OBLIQUE PROPAGATION VI. CONCLUSIONS

If the wave vector of the incident wave is not parallel to  The optical properties of helical-shaped periodic media
the helix axisxs, the propagation matri depends orxz  are well known and described in any textbook on liquid crys-
even in the rotating frame, where the elastic constantxare ta|s. It seems therefore convenient to summarize and discuss
independent. The dependencexgrcomes from the fact that - the analogies and differences between optical and acoustical
in this frame the incident wave vectkr is seen to rotate. In properties. As a first and very important point, we observe
both the laboratory and the rotating frames, the six eigenthat the most interesting analogies are found by comparing
modes are in general Bloch waves with an infinite number othe electromagnetic wave with the transversal components of
Fourier components. Different formalisms have been develthe acoustic waves, related to shear deformations. This
oped for the study of the eigenmodes of the electromagnetimeans that we must consider artificial helical media made of
field in helical liquid crystals, based on recurrent relationssolid crystals, since liquid crystals do not support elastic
[28] or on suitably truncated Fourier expansi¢29,30. shear waves. Artificial helical structures are easy to be pre-

More recently, a different formalism has been developedpared. The first one, made of thin mica sheets, has been
by Lakhtakia for the very general case of helical piezoelecprepared and studied before the discovery of liquid crystals.
tric crystals, where 10 independent eigenmodes €X]stt is Now many other techniques are availabl®,11). Another
based on the expansion of the propagation matrix for theossibility is to obtain the helical medium by simply freezing
field components in a power seriesxf The coefficients of a liquid crystal sample. For the electromagnetic waves, the
the series, that are ¥010 matrices, are expressed as func-difference between liquid and solid structures is not very
tions of the Fourier components of the kernel matrix appearimportant, at least in the framework of linear optics, whereas
ing in the propagation equation. Since only five Fourier comdt becomes essential for the acoustic waves.
ponents are different from zero, their expressions are rather The most important difference between optical and acous-
simple. In Ref[6] the method has been extended to the casd¢ical waves is due to the fact that in optics the possible lon-
of media with sources. The method is particularly suitablegitudinal mode is generally of little practical interest: it be-
for finite samples, because the series is very rapidly convergsomes important only under very particular conditidas
ing for small values of the ratio between the sample thickfor instance near dipolar or quadrupolar adsorption lines
ness and the helix pitch. [31]). Obviously, the longitudinal component of the acoustic

Since we are interested to the bulk properties of eigenwaves is never negligible, and it is generally coupled to the
modes, most of the already developed methods are of littliransversal ones. In helical media, the coupling terms go to
usefulness. Therefore, we only consider the case of quazero only if the two following conditions are met: the helical
siaxial propagation, wherle; is small and the term depend- structure is made of crystals having a symmetry axis or-
ing on x5 can be treated perturbatively. thogonal to the helix axigcholestericlike structurgsand the

The propagation matrixB is written as §=§(°) wave vectok is parallel to the helix axigaxial propagation
+§(1)(x3), andg(l’(xg,) is considered as a perturbation. A In this case, a very close analogy exists between the shear
very interesting approximation is already obtained by fullyacoustic waves and the electromagnetic waves. It has been
neglecting the matri>§(1)(x3). This approximation is well evidenced in Sec. Ill.
known in optics, where it is referred gsiasinormal approxi- In Sec. IV, the case of axial propagation in smecticlike
mation[29]. The matrixB(®) is immediately obtained from structures is considered, where the transverse and the longi-
Egs. (5) and (6) by setting co¥p=(1+cos 24)/2 and sifi¢  tudinal components ofi are coupled. This is perhaps the
=(1—cos 2p)/2. The submatrice8("), B{?), andB'?) are  most interesting case, and represents the most important re-
exactly the same as for axial propagation, whereas in theult of our research. In fact, fully analytic and very simple
matrix Ef,ou) a new term depending ddf appears. The solu- solutions are found, without any optical analogue. At oblique
tions of the propagation equations are similar to the onepropagation a numerical analysis or approximate methods
found in the preceding sections and valid for axial propagaare required for both optical and acoustical waves.
tion. Since the new term depends quadratically kgn it The research given here only concerns the bulk properties
gives negligibly small effects at quasiaxial propagation. Thisof the helical structures, but it evidences very interesting
fact is of great interest from the point of view of experi- effects which could stimulate new applications, in addition to
ments, since the acoustical field contains in any case wavdBose already considered in Reffg-10.
whose wave vector is not exactly parallel to the helix axis,

owing to diffraction. Our analysis shows that a small trans- APPENDIX A
versal component of the wave vector gives in general very ) . )
small effects. The propagation equations in the laboratory frame

Outside the limits of validity of thguasinormal approxi- X1,X3, X3 are
mation the use of the rotating frame is in general no more o, , L
convenient. We only observe that at oblique propagation the —po Ui =di0j, O[=NjjndjUpy, (A1)
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whered = d/dx; , and admit solution of the type

u' (") =u (xg)expikixg),  ofj(X')= o (xg)explikixy).
(A2)

PHYSICAL REVIEW E63 011703

Raifim=ram, r3=0.

With the symbols of Sec. Il, the propagation equations can
be written as

The corresponding equations in the rotating frame are imme-

diately found by setting

U-,,: Ri’iui s

’
i O-i’j’:Ri’iRj’jo-ij!

Nirjrirm = RiniRy R Rirmijim (A3)
whereR=exp( ¢), and taking into account the relations

d1=iky, d5=0, d3=243, (A4)
d3Ri; = Rijd3=ariRy;,

RikRjk=R&iR«;= 6ij ,

— pw’Ui=ik}(7i1 COSP— 05 COSPH) + T Tyat d307 ,
(A5)

oiz=[iki (X cosp—X72sing) + qA i mlUpm,
oij=[iki{ (X% cosp— N2 sing) + qh I m+ X2 dalup,

where the index in the last equation only assume the values
1 and 2. Such equations are fully equivalent to Ed5(5),
and (6) given in the text, that are simply written in a more
compact form.
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