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Acoustic wave propagation in structurally helical media
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A theoretical analysis is given of the acoustic wave propagation in periodically nonhomogeneous media
made of a solid material whose stiffness tensor is uniformly rotating along a given axis. In the last years, such
media have been studied theoretically as well as experimentally, in particular for what concerns sample
preparation and possible applications. A detailed analysis of their acoustical properties is given here, based on
fully analytic and simple propagation equations. For axial propagation:~i! the dispersion curves of media
where the transversal field components and the longitudinal ones are not coupled show only one forbidden
band, that gives selective Bragg diffraction; in the opposite case they show at least a second forbidden band,
that involves the quasilongitudinal and one of the quasitransversal eigenmodes;~ii ! in the first case~absence of
coupling!, the medium gives pure acoustical rotation forp!l, wherep is the helical pitch andl the acoustical
wavelength, a nonperfectly uniform but very large rotatory power forp of the order ofl, and a guided rotation
for p@l; ~iii ! in the presence of the coupling, regions of mode exchange between the longitudinal component
and a transversal one are generally present. The cases of lossy media and of quasiaxial propagation are also
considered, and the analogies between optical and acoustical properties discussed.

DOI: 10.1103/PhysRevE.63.011703 PACS number~s!: 61.30.2v, 62.65.1k
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I. INTRODUCTION

Very few periodic media have attracted as much inter
in optics as cholesteric liquid crystals, where the optic axis
an uniaxial material is uniformly rotating in space along
given direction, sayx3, being everywhere orthogonal tox3.
There are many good reasons for such interest: these s
turally helical media are very simple and at the same ti
important, because frequently found in nature, easily
tained artificially and of great interest for their propertie
We recall in particular the following facts. For light propa
gating along the axisx3 ~axial propagation! the Maxwell
equations admit fully analytic and very simple solutions. In
coordinate system whose axesx1 and x2 rotate in space,
rigidly following the rotation of the optic axis, such solution
assume the simple form of plane waves. In this sense an
this geometry the inhomogeneous medium behaves there
as homogeneous, with unusual and interesting optical p
erties that can be drastically changed by changing the h
pitch and the optical anisotropy.

Even more interesting properties are expected for
propagation of acoustic waves in solid helical media. In
last decade such waves have been the object of intens
search, in particular by Lakhtakia and co-workers, in the f
lowing directions.

~i! Theoretical analysis of acoustic wave propagation
solid helical media without@1–3# and with@4–6# piezoelec-
tric coupling between the acoustic and the electromagn
fields.

~ii ! Study of possible application@7–10#.
~iii ! Improvements of the already known techniques

the preparation of helical samples, and developments of
techniques@11–14#.

Helical liquid crystals are of little usefulness for acous
cal applications, because they behave as inhomogeneou
uids with high viscosity. It is however possible, at least
1063-651X/2000/63~1!/011703~10!/$15.00 63 0117
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principle, to obtain suitable samples by freezing an high te
perature liquid crystal, to obtain a metastable phase abl
support elastic shear waves. In the following, we will ma
reference toN* -like and C* -like structures, which behave
acoustically as frozen cholesterics~or chiral nematics,N* )
and chiralC-smectics (C* ), and have very different acous
tical properties.

The aim of the paper is the theoretical analysis of
eigenmodes for the acoustic wave propagation in a cont
ously twisted solid medium, in the absence of piezoelect
ity. For axial propagation, it is convenient to separately co
sider the cases without and with coupling between
longitudinal and transversal components of the displacem
vector, which correspond respectively, toN* - and C* -like
structures. The first case has already been considered in
@1,3,7,8#. Some not yet fully explored properties of th
eigenmodes are discussed in Sec. III, that can therefor
considered as a continuation of the cited papers. The o
case has received less attention up as yet, and constitute
most original part of the paper. The case of oblique pro
gation has been treated in Refs.@5,6#, so that only the simple
case of quasiaxial propagation is considered.

II. BASIC DEFINITIONS AND PROPAGATION
EQUATIONS

A. Definition of the system

Before the discovery of cholesteric liquid crystals, Reus
@15# prepared and studied the first artificial helical object,
superposing layers of mica and progressively changing t
orientation along the stack~Reusch pile!. We consider a Re-
usch pile made of identical anisotropic thin sheets of thi
nessd, each one rotated of an angleDf with respect to the
preceding one, and define in any sheet a local Carte
frame whose axisx3 is orthogonal to the sheets, and who
axesx1 and x2 are such that the elastic tensor compone
©2000 The American Physical Society03-1
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C. OLDANO AND S. PONTI PHYSICAL REVIEW E63 011703
l̃ l i jm of the stiffness tensorl have the same values in all th
sheets. In the limit where bothd andDf go to zero with a
fixed value of the ratioq5Df/d, the axesx1 andx2 rotate in
space describing helices with a pitch

p52p/q. ~1!

The helices are right-handed forq.0, left-handed forq
,0. We define then a laboratory~nonrotating! frame
x18 ,x28 ,x38 , with x385x3, and a rotation matrixR such that

xi85Ri j xj , i , j 51,2,3. ~2!

An external monocromatic plane wave with wave vectorkW8
lying in the planex18 , x38 generates internal waves who

wave vectors have tangential componentkW18• x̂18 ~phase

matching condition!. The displacement vectoruW and the
stress tensors in the rotating frame can be written as

ul5ul~x3!exp@ i ~k18x182vt !#,
~3!

s lm5s lm~x3!exp@ i ~k18x182vt !#.

The propagation equations for the displacement vector
for the stress tensor in both the laboratory and the rota
frame are given in Refs.@4,6# for the more general case o
piezoelectric crystals in a very compact but implicit form
Rather long but simple calculations give the following e
plicit propagation equation in the rotating frame:

dbW

dx3
5 i BbW , ~4!

bW 5F uW

sW
G , B5F Buu Bus

Bsu BssG ,

where s j5s j 3, and the kernel matrixB is defined by the
following set of equations:

i Buu5qr 2 ik18h~l̃31cosf2l̃32sinf!, ~5!

i Bus5h,

i Bsu52rv212 ik18@a11cosf2a21sinf#,

i Bss52qr 2 ik18@a12cosf2a22sinf#,

aj 15 ik18h@~l̃ j 12l̃ j 3hl̃31! cosf2~ l̃ j 22l̃ j 3hl̃32! sinf#,

~6!

aj 25l̃ j 3h,

where j 51,2; l̃ i j andh are 333 matrices defined as

l̃ lm
i j 5l̃ l i jm , h5~ l̃33!21; ~7!

1 is the 333 identity matrix;
01170
d
g

r 5S 0 21 0

1 0 0

0 0 0
D ~8!

and

f5qx31f0 . ~9!

Only three components of the stress tensors appear in the
propagation equation, and the 636 kernel matrixBI depends
on x3 only through the azimuthal anglef that defines the
rotation of the local axesx1 , x2 with respect tox18 , x28 .
Since the anglef only appears in the terms depending
k18 , the kernel matrixB is independent of x3 for k1850, i.e.,
for axial propagation. This is the main advantage of th
rotating frame with respect to the laboratory one. Further,
small k18 values, i.e., at quasiaxial propagation, t
x3-dependent terms can be treated perturbatively.

In Refs. @5,6# the 636 stiffness matrixC instead of the
fourth rank tensorl is considered. An alternative derivatio
of the propagation equations, that avoids the use of the
trix C, is given in the Appendix.

It is important to observe that the axes (x1 ,x2 ,x3), used
here to express the components of the stiffness tensors in
sheet, are different from the crystallographic axes (x,y,z)
generally used in the theory of elasticity@16#. A further ro-
tation matrix is therefore required to relate the compone
l̃ i jkl andl i jkl of the stiffness tensorl in the rotating and in
the crystallographic frames. In the following, we use t
symbolsl i jkl8 (x38), l̃ i jkl , andl i jkl for the components of the
tensor l in the laboratory, rotating and crystallograph
frames, respectively~similarly for the components ofC).

The medium will be assumed as lossless and achiral,
therefore defined by a real symmetric matrixC, except in the
Sec. III C, where a brief discussion of the possible effects
losses is given.

B. Axial propagation: Cholestericlike and smecticlike
structures

For axial propagation, the 333 submatrices ofB write

Buu5Bss52 iqr , Bus52 ih, Bsu5 irv21. ~10!

The matrixr appearing inBuu andBss couples the transver
sal componentsu1 , u2 , s1 , s2 of the state vectorb,
whereas the coupling between these components and the
gitudinal ones depends on the structure of the matrixh
5(l̃33)21. As already stated in the introduction, it is conv
nient to separately treat the cases with and without coup
between transversal~T! and longitudinal~L! components.
The decoupling between theT andL components of the stat
vector only occurs in solid media having a structure simi
to the one of cholesteric (N* ) liquid crystals, namely in
helical structures that locally have a symmetry axis ortho
nal to the helix axisx3. In all the other helical structures
including smecticC* liquid crystals, the six components ar
coupled. As already stated in the introduction, these t
3-2
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ACOUSTIC WAVE PROPAGATION IN STRUCTURALLY . . . PHYSICAL REVIEW E63 011703
types of structures are referred here asN* -like andC* -like,
for brevity, but our analysis covers any solid helical stru
ture.

The coupling betweenT andL components is given by th
elements of the symmetric matricesh and l̃33 having
pedices 13 and 23. The conditions to obtainN* -like struc-
tures are therefore

l̃13
335l̃13335C̃5350, l̃23

335l̃23335C̃4350. ~11!

For axial propagation, any plane containingx3 can be con-
sidered as the incidence plane (x1 ,x3). If the conditions~11!
are satisfied, a suitable choice ofx1 diagonalizes the matrice
l̃33 andh. In theN* -like structures we can therefore set

h5S h1 0 0

0 h2 0

0 0 h3
D ~12!

without loss of generality.
To better understand the meaning of Eq.~11! for struc-

tures whose layers are perfect crystals, we must conside
reference frame (x,y,z). If it is coincident with the rotating
frame (x1 ,x2 ,x3), Eq. ~11! is satisfied by crystals of all crys
tallographic systems, except the triclinic one, which gives
any caseC* -like structures. It is however to be observed th
only the monoclinic and orthorombic systems are of intere
In fact the other, more symmetric, systems give a struc
that behaves no more as helicoidal: the three compon
u1 ,u2 ,u3 of uW become uncoupled, and the solutions of t
propagation equations are trivial. Such systems~except the
cubic one! give interesting structures if the crystallograph
axis z makes an angleu ~tilt angle! with the helical axisx3.
In the following sections we consider media whose matrixC
in the crystallographic frame (x,y,z) has the simple struc
ture:

C5S C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

D . ~13!

We recall that in Eq.~13! the indexes have the following
meaning:

1↔xx, 2↔yy, 3↔zz, 4↔yz, 5↔xz, 6↔xy,

and that the stiffness matrix has the structure of Equa
~13! for crystals of the cubic, hexagonal, and orthorhom
systems and of the classes 4mm, 422, 4̄2m, 4/mm of the
tetragonal system. Equation~13! is also valid for frozen cho-
lesteric and chiral smectic liquid crystals, which can be c
sidered made of layers having symmetryD`h and C2h , re-
01170
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spectively (̀ /m and 2/m in international notations!. With
such crystals, we obtain aN* -like structure if the crystallo-
graphic axisz is everywhere orthogonal to the helix axisx3
~i.e., if u590°! and a C* -like structure if it is obliquely
oriented. For the sake of definiteness, we will consider in
next sectionN* -like structures whereu590°, z5x1, andy
5x2. In this case

h151/C55, h25C66, h351/C11. ~14!

As stated in the introduction, the axial propagation
N* -like structures has been already treated in several pap
so that we only discuss some properties that have not
been fully explored. Analogies and differences betwe
acoustical and optical waves are evidenced by comparing
acoustical properties of solid helical media with the we
known optical properties of the helical liquid crystal med
To this purpose, we observe that the difference between
uid and solid structures is not very important for the elect
magnetic waves, at least in the framework of linear opti
whereas it becomes essential for the acoustic waves.

III. AXIAL PROPAGATION IN CHOLESTERICLIKE
STRUCTURES

The propagation matrixB, given by Eq.~10!, is a constant
matrix and admits solutions having the simple form of pla
waves:

uW 5uW 0 exp~ ikx3!, sW 5sW 0 exp~ ikx3!. ~15!

For N* -like structures the longitudinal~L! and transversa
~T! components of the vectorsuW andsW are not coupled. The
longitudinal components satisfy the equation

2 i S 0 h3

2rv2 0 D S u3

s3D 5kS u3

s3D , ~16!

which gives

k25rh3v25rv2/C11. ~17!

@As already stated, we consider in this section structures
which h i are related toCi j by Eq. ~14!, for the sake of
definiteness: for the otherN* -like structures, we must simply
substituteC11,C55,C66 with other elastic constants.# The
two solutions correspond to eigenmodes propagating in
posite directions (L-modes!. These modes have been exhau
tively treated in Ref.@3#, so that no further analysis is re
quired.

The two transversal components are coupled and sa
the equation

2 iS 0 q h1 0

2q 0 0 h2

2rv2 0 0 q

0 2rv2 2q 0
D S u1

u2

s1

s2

D 5kS u1

u2

s1

s2

D ,

~18!
3-3
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C. OLDANO AND S. PONTI PHYSICAL REVIEW E63 011703
that summarizes the properties of the four transversal eig
modesT1

1 , T2
1 , T1

2 , andT2
2 . After elimination of the com-

ponentss1 ands2, we obtain the equation system

S C55k
21C66q

2 iqk~C551C66!

2 iqk~C551C66! C66k
21C55q

2 D S u1

u2D 5rv2S u1

u2D ,

~19!

which straightforwardly gives

k25q21kint
2 6A4q2kint

2 1kint
4 d2, ~20!

u2

u1
5

2 iqk~C551C66!

C55k
21C66q

22rv2
[

C55q
21C66k

22rv2

iqk~C551C66!
,

~21!

where

kint
2 5rv2

C551C66

2C55C66
, d5

C552C66

C551C66
. ~22!

The parameterkint has the meaning of an averaged wa
vector. Equation~20! admits in general four solutions6k1 ,
6k2. The dispersion curves are shown in Fig. 1, the ratio
the ellipse’s axes in Fig. 2, where the sign of the axes r
defines the handedness of the elliptic polarization. To
purpose, we notice that the eigenmodesT1

1 and T2
1 have

everywhere opposite signs, whereas similar plots in Ref.@7#
show an interval where they have the same sign. This ap
ent discrepancy is simply due to a different labeling of t
eigenmodes. Our labels1 and 2 define the sign of the
group velocitydv/dk ~that gives the direction of the energ
flux!, whereas in Ref.@7# the modes are labeled according
the sign ofk. The apparent discrepancy occurs in the inter
of the dispersion curves wherek and dv/dk have opposite
signs.

FIG. 1. Dispersion curves in the rotating frame for a choles
iclike structure made of tellurium dioxide~class 422!. C5552.65
(1010 N/m2) and C6656.59 (1010 N/m2). The normalization fre-
quency isqA(C551C66)/r.
01170
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Here and in Fig. 3 we assume elastic consta
corresponding to the tetragonal crystal telluriu
dioxide ~class 422! where C12:C13:C11:C33:C55:C66
55.12:2.18:5.5:10.587:2.65:6.59@16#. All the curves have
the same shape as the curves obtained for the electrom
netic waves. In particular, the curvesT1

1 and T1
2 clearly

show the well-known frequency gap, wherek is purely
imaginary and the periodic structure gives a Bragg diffra
tion band. The presence of a forbidden band has alrea
been evidenced in Refs.@3# and @7#. Real and purely imagi-
nary k values correspond to propagating waves~stable solu-
tions! and to standing evanescent waves~unstable solutions!,
respectively. For what concerns the polarization of the eig
modes, the most important property has already been

- FIG. 2. Axes ratio versus normalized frequency. Within the f
quency gap the eigenmode 11 is linearly polarized. The materia
parameters are the same as in Fig. 1.

FIG. 3. Dispersion curves in the laboratory frame. The curv
give the wave vectors of the dominant Fourier component of
Bloch wavesT1

1 andT2
1 . The material parameters are the same

in Fig. 1.
3-4
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ACOUSTIC WAVE PROPAGATION IN STRUCTURALLY . . . PHYSICAL REVIEW E63 011703
denced in Ref.@3# and can be stated as follows. The eige
modes are in general elliptically polarized; in the rotati
frame, the shape of the ellipse is independent ofx3; in the
laboratory frame it rotates alongx3, rigidly following the
rotation of the structure. A plot versusx3 of the field com-
ponentsui8 or s i j8 in the laboratory frame, at a fixed instantt,
gives beatinglike curves. This fact is obviously related to
presence of the two characteristic periods: the wavelen
l52p/k and the periodp5p/q of the structure. Such prop
erties are also displayed by the optical waves in choleste
but the acoustical waves give rise to a more rich variety
behaviors. In particular, a beating structure appears eve
the L-modes if we consider the componentss118 , s228 , and
s128 of the stress tensor@3#.

We add here the following interesting properties, valid
real values of the constantsC55 andC66 ~the case of complex
elastic constant is discussed in Sec. III C!.

~i! At the boundaries of the Bragg band, the eigenvaluk
of the modeT1

1 is equal to zero, and Eq.~19! gives

v1
2

v2
2

5
C66

C55
. ~23!

The band width only depends on the anisotropy ra
C66/C55 and could be very large.

~ii ! If the solution is stable, one of the two ellipse’s axes
everywhere along the symmetry axis of the structure. If i
unstable, the ellipse collapses into a straight line. The po
ization is linear, with the vectoruW everywhere parallel to
x1[z at one of the two boundaries of the forbidden ban
obliquely oriented with respect tox1 within the band, and
parallel tox2 at the other boundary: it therefore rotates
90° for v going fromv1 to v2.

Such properties are immediately found by considering
~21!. The ratiou2 /u1 is purely imaginary~a fact that obvi-
ously means elliptic polarization, with the ellipse’s ax
alongx1 andx2) if k is real; it is real~and the polarization is
linear! if k is purely imaginary; it is equal to zero or t
infinite if k50.

For complex values of the constantsC55 and C66, the
wave vectork is in general complex: the simplicity of th
properties discussed here is therefore lost.

A. Acoustical rotation

The most important optical and acoustical properties
N* -like systems for axial propagation are related to th
rotatory power and to the presence of a single and very la
forbidden band. In this section we consider the acoust
rotation. Since it has already been considered in Ref.@3#, we
only discuss its dependence on the ratiok/q5p/l, wherep
is the pitch of the helical structure andl the average wave
length of the eigenmodesT1 , T2. This dependence appea
in fact as quite complicated and very unusual, if compa
with the one displayed by the homogeneous chiral cryst
We recall the following.

~i! Homogeneous crystals rotate the polarization plane
linearly polarized waves propagating along their acou
01170
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axes, because in these directions the eigenmodes are c
larly polarized in opposite senses and have different w
vectorsk1 , k2.

~ii ! The rotatory power, i.e., the rotationc/d per unit
length, is equal to (k22k1)/2 and scales asa/l2, wherea is
an average length of the lattice cell. Significant deviatio
from thel22 law are only found forl of the order ofa @17#,
i.e., in a frequency range where the medium is strongly d
persive.

To discuss the rotatory power of N* -like systems, we
must find outki8 ( i 51,2) and the corresponding wave ve

torsuW i85RuW i in the laboratory framefor the modesT1
1 , T2

1 .
To this purpose, it is convenient to consider any eigenw
as a superposition of circularly polarized waves, because
transformationR leaves unchanged the polarization state
these waves and simply shifts their wave vectors fromk to
k85k6q, where the sign depends on the handedness of
circular polarization. Any polarization state can be written
a superposition of left and right circularly polarized states
means of the Jones formalism:

S a1

ia2D 5
a11a2

2 S 1

i D 1
a12a2

2 S 1

2 i D 5alS 1

i D 1arS 1

2 i D ,

~24!

whereal and ar are, respectively, the amplitude of the le
and of the right circular components. The difficulty to stu
the acoustical activity inN* -like systems is related to th
fact that in the laboratory frame the eigenmodesT1

1 andT2
1

are no more plane waves, but Bloch waves with two pla
wave components having wave vectorski85ki6q, i 51,2.
Strictly speaking, such modes cannot give acoustical activ
However, a largep/l range exists, where one of the tw
circular components is very small with respect to the ot
one and, as a first approximation, it can be neglected:
ellipse described by the vectoruW (t) at any given point is very
close to a circle. This actually occurs in the low frequen
range, and more precisely forp/l8 going from zero up to
;0.5, wherel8 is the wavelength in the laboratory frame.
this range, the medium behaves in fact as homogeneou
least for its acoustical and optical properties@18–20#, since
the period of the structure is small with respect to the wa
length. However, even in this range a great difference ex
between chiral crystals and theN* -like structure considered
here, where the rotatory powerc/d is given by

c

d
5

kint
4 d2

8q~kint
2 2q2!

1O~d4!. ~25!

This equation is the acoustical equivalent of the de Vr
equation@21#; it is easily derived from Eq.~20! by consider-
ing the dominant circular component of the eigenmodesT1

1 ,
T2

1 . For p!l8, Eq. ~25! gives a scaling low of the type
kint

4 /q3. The rotatory power scales asl24, not asl22. In fact
kint

4 is proportional tov4 @see Eq.~22!#, to k84 ~see Fig. 3!,
and therefore tol824.
3-5
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C. OLDANO AND S. PONTI PHYSICAL REVIEW E63 011703
At higher frequencies, the smaller components of
Bloch waves gradually increase, and give new and undes
effects, at least for the acoustical rotation: we have apseudo
rotatory power, where the rotation is no more uniform an
linearly polarized wave becomes slightly elliptical, with a
oscillatory behavior of the smaller ellipse’s axis. The avera
rotatory power is still given by (k282k18)/2, wherek18 andk28
refer to the dominant Fourier components of the Blo
waves. As shown in Fig. 3, this quantity has maxima at
edges of the forbidden band, where the approximated
mula ~25! fails. Interestingly, the medium can give optic
rotation even in the forbidden band, as explained in the n
section. At a given valuel inv8 'p of l8 within this band, the
rotatory power changes its sign. Forl8.l inv8 , the polariza-
tion plane rotates in the same sense as the symmetry ax
the helical structure, forl8,l inv8 it rotates in the opposite
sense.

The undesired effects increase by increasingp, and for
p.l8/d we are outside the pseudo rotatory power regim
for each one of the eigenmodes, the ellipse described by
vectoruW is strongly elongated, and a superposition of the t
eigenmodes gives rise to a complicated space dependen
the vectoruW . At higherp values, i.e., forp@l8/d, the ellipse
practically collapses into a straight line: the polarization
theT eigenmodes is nearly linear, withuW parallel or orthogo-
nal to the symmetry axis of the structure. The eigenmo
are guided by the structure, in the sense that their polar
tion plane simply rotates, adiabatically following the rotati
of the elastic tensor~adiabatic limit or waveguide regime
@22#!. This rotation must not be confused with the rotato
power, because it only occurs for two well defined and m
tually orthogonal input polarizations: all the other linear
polarized waves excite both eigenmodes, which travel at
ferent phase velocities (C66/r)1/2 and (C55/r)1/2, giving in
general elliptic output polarization.

B. Unstable solutions

The presence of a frequency band where thek value for a
T-mode becomes purely positive imaginary, giving select
attenuation, has already been evidenced in Ref.@7#. We dis-
cuss here the possibility to obtain pseudo rotatory po
even within the forbidden band, despite the fact that here
mode T1 is linearly polarized. To this purpose, let us fir
describe the mechanism that gives rise to an unstable s
tion. Consider a lossless helical medium and an ideal se
made of a source sheet at the planex350, and of a perfect
termination sheet atz5d, where the wave is totally ab
sorbed. If the polarization state of the wave generated by
source is orthogonal to the polarization state of the modeT2

1

~and therefore nearly circular! only the modeT1
1 is excited.

In the limit d→`, the wave does not reach the terminati
sheet, because it is attenuated: this means that it isgradually
but totally reflected by the successive layers of the medi
The linear polarization of the eigenmodeT1

1 comes from the
superposition of the forwardly and backwardly propagat
plane waves, that at any point are circularly polarized w
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the same amplitude and opposite senses of rotation, and
therefore rise to a linearly polarized standing wave. For sm
enoughd values, the amplitude of the reflected wave is ve
small, and the wave generated by the source reaches
termination sheet practically unchanged, i.e., circularly p
larized. In this condition, the wave generated by the sourc
no more a standing wave but a circularly polarized propag
ing wave, that can be considered as a superposition of
eigenmodeT1

1 andT1
2 ~the presence of this last eigenmod

is required by the boundary conditions at the terminat
sheet!. It is now easily understood that within the forbidde
band the sample gives selective attenuation or pseudo
tory power, depending on its thickness.

The optical equivalent of the acoustical rotation within t
forbidden band is well known: measurements of the opti
rotatory power of cholesteric liquid crystal samples@23# and
of chiral sculptured thin films@24# in the forbidden band
have been done. We presume that the effect discussed
could also be of interest for acoustical applications, since
a limited frequency range the rotatory power goes conti
ously from positive to negative values, and can give
acoustical rotation of 90° along a path of few pitches.

Obviously the interest of the unstable solutions is not
stricted to the acoustical rotation. A further reason of inter
is evidenced in the next section. We conclude this section
considering the reflection properties of the helical struct
for waves that only excite the eigenmodeT1

1 . The polariza-
tion state of the external plane wave must be suitably
lected; it is nearly circular if the impedance mismatch of t
two media is very small. For such wave, a thick sam
behaves as a perfect mirror, because it gives total reflec
However, the mirror and the helical medium give reflect
waves with opposite handedness. This unusual reflec
property of helical media is a consequence of the very p
ticular reflection mechanism described above. In the mir
reflection the incident and the reflected waves have the s
angular momentum. In the helical medium the angular m
menta are opposite: if the first medium is a viscous ani
tropic liquid ~that supports viscous shear waves!, a circularly
polarized wave can rotate the reflecting helical structure.

C. Lossy media

The very simple polarization properties of the eigenmod
in lossless media have been derived by considering tha
the quantities appearing in Eq.~21! are purely real or purely
imaginary. In lossy media the elastic constantsC55 andC66
become complex and the simplicity of the solutions is lo
All the eigenmodes show dissipative attenuation, that in
forbidden band adds to the reactive attenuation already
cussed for lossless media. For perfect crystals the dissipa
attenuation is very small, but in artificial structures a seco
and more efficient source of attenuation could be pres
due to the defects that act as diffusing centers.

The attenuation due to absorption or diffusion~extinction!
is generally considered as a parasitic effect, to be avoide
least for what concerns the working of instruments. Ho
ever, it could give rise to a conceptually interesting ne
3-6
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ACOUSTIC WAVE PROPAGATION IN STRUCTURALLY . . . PHYSICAL REVIEW E63 011703
effect, consisting in an anomalous transmission peak at
of the boundaries of the forbidden band~Borrmann effect!.
This fact is a consequence of the extinction anisotropy,
of the fact that at the two boundaries the polarization
nearly linear, with the polarization plane parallel or orthog
nal to the symmetry axis of the structure, where the exti
tion is minimum or maximum. Obviously, the transmissi
peak corresponds to the case of minimum extinction. It co
be very enhanced for strongly anisotropic attenuation,
shown by Fig. 4, where the ideal case of exactly zero atte

ation for uW parallel to the symmetry axis is considered. T
Borrmann effect has been first found for x rays in 1941@25#,
observed in cholesteric liquid crystals samples for lig
waves@26# and discussed in thin films helicoidal bianisotr
pic media for electromagnetic waves@27#.

We finally observe that something similar to the react
attenuation and to the Bragg reflection could also be pre
in the liquid phase of cholesterics, where the elastic str
tensors8 is zero but the medium can support strongly
tenuated shear waves, owing to the presence of a vis
stress tensor. A description of the viscous shear wave
anisotropic liquids is given in Ref.@22#.

IV. AXIAL PROPAGATION IN SMECTICLIKE
STRUCTURES

We consider here the helical structures where the tra
versal and longitudinal components of the acoustic wave
coupled. By suitably choosing the direction of the axesx1 ,
x2, the submatrixBus of the propagation matrixB can be
written as

FIG. 4. Attenuation of the eigenmodeT1
1 over a distanced

5103l int , for a hypothetical medium with parameters valuesC55

52.6531010 and C665(6.5910.1 iv)1010 in SI units. The wave
is strongly attenuated except in a very thin interval (Dv/v
;0.01), close to one of the boundaries of the forbidden band,
is at the left-hand side of the transmittance peak. The curve
dences an unusual and interesting property of the eigenwave
proximity of the forbidden band.
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Bus52 ih52 iS h1 0 h8

0 h2 h9

h8 h9 h3
D , ~26!

and for lossless media it is real. The off-diagonal mat
elementsh8 andh9 act as coupling terms between the lo
gitudinal and transversal components of the vectoruW . This
gives new effects, without an optical equivalent: hence
great interest of this case. In general, all the eigenwaves
now elliptically polarized. The ellipse described by the ve
tor uW at any given point rotates solidary with the symme
axis without changing its shape, but it is contained in a pla
obliquely oriented with respect tox3. One of the main axes
of the ellipse is alongx1 if h850, alongx2 if h950. If both
h8 andh9 are different from zero, the ellipse’s axes can
principle have any direction.

From Eqs.~4!, ~10!, and ~26!, the following bicubic dis-
persion relation is easily found:

k62k4a1k2b1c50, ~27!

where

a5~h11h21h3!rv212q2,

b5~h1h21h1h31h2h32h822h92!r2v4

1~2h32h12h2!q2rv21q4, ~28!

c5~2h1h2h31h2h821h1h92!r3v6

1~h1h31h2h32h822h92!r2v4q22h3rv2q4.

New forbidden bands, wherek has an imaginary part, ar
expected. Since the roots6k1 ,6k2 ,6k3 of Eq. ~27! satisfy
the relation

k1
21k2

21k3
25a.0, ~29!

the following cases can in principle appear, for real elas
constants:

~1! the threeki
2 are real, and at least one is positive;

~2! only one of theki
2 values is real, the other two ar

complex conjugated.
As evident, real positiveki

2 values correspond to stabl
solutions, real negativeki

2 values correspond to unstable s
lutions with purely imaginary wave vectors. The possib
couple of complex conjugatedki

2 values gives four strictly
related eigenmodes, with wave vectors6k86 ik9. Many dif-
ferent types of dispersion curves can appear, depending
the actual values of the elastic constants and of the h
pitch: the universal and simple behavior of the dispers
curves ofN* -like structures is lost. It is however to be ob
served that for small values of the coupling parametersh8
and h9 the properties of the eigenmodes are in general
very far from the ones discussed in Sec. III. In this case, i
convenient to first find out the properties of the unperturb
eigenmodes, obtained by settingh85h950. Only around
the degeneration points the properties of the perturbed

at
i-
in
3-7
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unperturbed eigenmodes are very different. The typical
havior of the perturbed dispersion curves is plotted in Fig
Such behavior, and the properties of the correspond
eigenmodes, can be understood on the basis of the follow
arguments. The unperturbed dispersion curves for the tr
versal modes are similar to the ones discussed in Sec. III
plotted in Fig. 1. In general, these curves are intersected
the dispersion curve of the longitudinal mode in two diffe
ent pointsk5k1,q andk5k2.k1. At these points the un
perturbed solutions are degenerated, but in the presenc
the coupling terms the degeneration disappears and amode
mixing occurs. It is now easily understood, on the basis
simple topological and physical arguments, that the m
mixing gives anew forbidden bandat the first one of the two
intersection points, and a longitudinal to transversal mo
exchange at the other one, without a further forbidden ba
In fact:

~i! the unperturbedL1-curve crosses the horizontal ax
of Fig. 1 atk/q50: it therefore first intersects the modeT1

2 .
A mode mixing between two waves traveling in oppos
direction gives rise to standing waves, and the degenera
point can be avoided only if a new forbidden band appe
for topological reasons;

~ii ! the sameL1-curve can intersect again the curveT1
1 or

the curveT2
1 , depending on the parameter values. In a

case, the two intersecting curves correspond to waves pr
gating in the same direction. Their mixing gives rise to n
progressive waves, as evident, with a longitudinal to tra
versal mode exchange, and vice versa. The two positive
perturbedki

2 values are only slightly changed by the pertu
bation, and are still positive.

The perturbed dispersion curves corresponding to the
of unperturbed curves with degeneration points atk1'0.4q
andk2'1.5q are plotted in Fig. 6, together with a quanti
related to the ratio between the longitudinal and transve
components of the displacement vectoruW . The perturbed dis-
persion curves never give a degeneration point because
never intersect. They clearly show the newforbidden band,

FIG. 5. Dispersion curves in the rotating frame for a smecticl
structure, made of tellurium dioxide, withu545°.
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corresponding to the first intersection point atk5k1, and the
longitudinal to transversalmode exchangeat k5k2, where
theL andT components are nearly equal for each one of
eigenmodesT1

1 andT3
1 . The parameter values are such th

the unperturbedL-curve intersects the unperturbedT1
1 and

T1
2 , but not the curveT2. This last transversal eigenmod

remains therefore everywhere essentially transversal.
For C11 intermediate betweenC44 and C55 the second

intersection point can be absent. In this case, the longitud
to transversal mode exchange never occurs, as shown in
7.

A suitable choice of the parameters allows to obtain
strong mixing between any couple of components of the v
tor uW , a fact that could be of interest for applications~longi-

FIG. 6. Dispersion curves and modes ratio in the rotating fra
for a smecticlike structure withC11:C33:C13:C44:C55:C66

56:10:1:4:5:2 andu545°; the modes ratio is defined asu3
2/@u1

2

1u2
2#. It is equal to 0 and tò for purely transversal and purel

longitudinal modes, respectively.

FIG. 7. The same as in Fig. 6 with
C11:C33:C13:C44:C55:C6654.5:5.6:1:6:4:10 andu545°.
3-8
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tudinal to transversal mode-exchange and acoustical r
tion!.

V. OBLIQUE PROPAGATION

If the wave vector of the incident wave is not parallel
the helix axisx3, the propagation matrixB depends onx3
even in the rotating frame, where the elastic constants arx3
independent. The dependence onx3 comes from the fact tha
in this frame the incident wave vectorkW 8 is seen to rotate. In
both the laboratory and the rotating frames, the six eig
modes are in general Bloch waves with an infinite numbe
Fourier components. Different formalisms have been de
oped for the study of the eigenmodes of the electromagn
field in helical liquid crystals, based on recurrent relatio
@28# or on suitably truncated Fourier expansions@29,30#.

More recently, a different formalism has been develop
by Lakhtakia for the very general case of helical piezoel
tric crystals, where 10 independent eigenmodes exist@5#. It is
based on the expansion of the propagation matrix for
field components in a power series ofx3. The coefficients of
the series, that are 10310 matrices, are expressed as fun
tions of the Fourier components of the kernel matrix appe
ing in the propagation equation. Since only five Fourier co
ponents are different from zero, their expressions are ra
simple. In Ref.@6# the method has been extended to the c
of media with sources. The method is particularly suita
for finite samples, because the series is very rapidly conv
ing for small values of the ratio between the sample thi
ness and the helix pitch.

Since we are interested to the bulk properties of eig
modes, most of the already developed methods are of l
usefulness. Therefore, we only consider the case of q
siaxial propagation, wherek18 is small and the term depend
ing on x3 can be treated perturbatively.

The propagation matrixB is written as B5B(0)

1B(1)(x3), andB(1)(x3) is considered as a perturbation.
very interesting approximation is already obtained by fu
neglecting the matrixB(1)(x3). This approximation is well
known in optics, where it is referred asquasinormal approxi-
mation @29#. The matrixB(0) is immediately obtained from
Eqs. ~5! and ~6! by setting cos2f5(11cos 2f)/2 and sin2f
5(12cos 2f)/2. The submatricesBuu

(0) , Bus
(0) , and Bss

(0) are
exactly the same as for axial propagation, whereas in
matrix Bsu

(0) a new term depending onk81
2 appears. The solu

tions of the propagation equations are similar to the o
found in the preceding sections and valid for axial propa
tion. Since the new term depends quadratically onk18 , it
gives negligibly small effects at quasiaxial propagation. T
fact is of great interest from the point of view of expe
ments, since the acoustical field contains in any case wa
whose wave vector is not exactly parallel to the helix ax
owing to diffraction. Our analysis shows that a small tran
versal component of the wave vector gives in general v
small effects.

Outside the limits of validity of thequasinormal approxi-
mation, the use of the rotating frame is in general no mo
convenient. We only observe that at oblique propagation
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six independent solutions of the propagation equation
Bloch waves with an infinite number of Fourier componen
and a numerical analysis is in general required.

VI. CONCLUSIONS

The optical properties of helical-shaped periodic me
are well known and described in any textbook on liquid cry
tals. It seems therefore convenient to summarize and dis
the analogies and differences between optical and acous
properties. As a first and very important point, we obse
that the most interesting analogies are found by compa
the electromagnetic wave with the transversal component
the acoustic waves, related to shear deformations. T
means that we must consider artificial helical media made
solid crystals, since liquid crystals do not support elas
shear waves. Artificial helical structures are easy to be p
pared. The first one, made of thin mica sheets, has b
prepared and studied before the discovery of liquid cryst
Now many other techniques are available@12,11#. Another
possibility is to obtain the helical medium by simply freezin
a liquid crystal sample. For the electromagnetic waves,
difference between liquid and solid structures is not ve
important, at least in the framework of linear optics, where
it becomes essential for the acoustic waves.

The most important difference between optical and aco
tical waves is due to the fact that in optics the possible l
gitudinal mode is generally of little practical interest: it b
comes important only under very particular conditions~as
for instance near dipolar or quadrupolar adsorption lin
@31#!. Obviously, the longitudinal component of the acous
waves is never negligible, and it is generally coupled to
transversal ones. In helical media, the coupling terms go
zero only if the two following conditions are met: the helic
structure is made of crystals having a symmetry axis
thogonal to the helix axis~cholestericlike structures!, and the
wave vectorkW is parallel to the helix axis~axial propagation!.
In this case, a very close analogy exists between the s
acoustic waves and the electromagnetic waves. It has b
evidenced in Sec. III.

In Sec. IV, the case of axial propagation in smecticli
structures is considered, where the transverse and the lo
tudinal components ofuW are coupled. This is perhaps th
most interesting case, and represents the most importan
sult of our research. In fact, fully analytic and very simp
solutions are found, without any optical analogue. At obliq
propagation a numerical analysis or approximate meth
are required for both optical and acoustical waves.

The research given here only concerns the bulk proper
of the helical structures, but it evidences very interest
effects which could stimulate new applications, in addition
those already considered in Refs.@7–10#.

APPENDIX A

The propagation equations in the laboratory fram
x18 ,x28 ,x38 are

2rv2ui85] i8s i j8 , s l i8 5l l i jm8 ] j8um8 , ~A1!
3-9
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where] j85]/]xj8 , and admit solution of the type

u8~xW8!5ui8~x38!exp~ ik18x18!, s i j8 ~xW8!5s i j8 ~x38!exp~ ik18x18!.

~A2!

The corresponding equations in the rotating frame are im
diately found by setting

ui 8
8 5Ri 8 iui , s i 8 j 8

8 5Ri 8 iRj 8 js i j ,

l i 8 j 8 l 8m85Ri 8 iRj 8 jRl 8 lRm8ml i j lm , ~A3!

whereR5exp(rf), and taking into account the relations

]185 ik18 , ]2850, ]385]3 , ~A4!

]3Ri j 2Ri j ]35qrikRk j ,

RikRjk5RkiRk j5d i j ,
d-
ve
ti

o

m.

.

01170
e-

R3l r lm5r 3m , r 3l50.

With the symbols of Sec. II, the propagation equations c
be written as

2rv2ui5 ik18~s i1 cosf2s i2 cosf!1qriksk31]3s i ,
~A5!

s i35@ ik18~ l̃ im
31 cosf2l̃ im

32 sinf!1ql̃ ik
33r km#um ,

s i j 5@ ik18~ l̃ im
j 1 cosf2l̃ im

j 2 sinf!1ql̃ ik
j 3r km1l̃ im

j 3 ]3#um ,

where the indexj in the last equation only assume the valu
1 and 2. Such equations are fully equivalent to Eqs.~4!,~5!,
and ~6! given in the text, that are simply written in a mor
compact form.
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